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The Means of Prediction and the 
Production Function of AI

threshold AI will exponentially self-improve. And both 
sides understand potential problems with AI only 
as conflicts between human and machine, which are 
described as problems of value alignment.

Against both boomers and doomers, I argue that the 
progress of AI is not fate but rather a product of human 
choices. The key conflicts are not between humans and 
machines but between different people. The answer 
to these conflicts is shared democratic control of AI 
and of the objectives that it pursues: Those impacted 
by algorithmic decisions need to have a say over these 
decisions.

In the following, I review and expand on this argument. 
I first discuss how all of AI involves optimization of 
some measurable objective. Social conflicts around AI 
are about the choice of these optimization objectives.

I then analyze how control of these objectives is based 
on control of the inputs into AI - the means of prediction - 
which include data and compute, but also expertise and 

Introduction
How should we regulate AI? This debate is often 
dominated by arguments between “AI boomers” and “AI 
doomers” (Hao, 2025). AI boomers claim that building 
“artificial general intelligence” (AGI) is the last problem 
that we need to solve. Once AGI has been built, it will 
then take care of the rest - continuously improving itself, 
while at the same time curing cancer, solving climate 
change, etc. AI doomers similarly believe that AGI, once 
it has reached the threshold of human intelligence, will 
continue to improve itself, but will ultimately - driven 
by self-preservation - eliminate humanity.

In my book (Kasy, 2025) (University of Chicago Press, 
October 2025), I argue that we need to step outside of 
this false dichotomy between AI boomers and doomers. 
Both boomers and doomers share problematic implicit 
assumptions: Both sides assume that the advent of AI 
is inevitable, intelligence is one-dimensional, there 
is a threshold of human intelligence, and beyond this 
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•	 The real AI governance challenge: Who gets to decide what AI systems optimize for? 
Current debates miss that AI conflicts are between different groups of people, not humans 
vs. machines.

•	 Power flows from control of AI inputs: Those who control the means of prediction (data, 
computing power, expertise, and energy) determine AI objectives.

•	 Current governance approaches fail: Individual privacy rights and market mechanisms 
can’t address AI’s collective harms and benefits.

•	 Democratic control is the solution: Give stakeholders affected by AI decisions a voice in 
setting AI objectives.
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used to select individuals as targets and predict when 
fathers would be at home with their children, to bomb 
them together.

Based on the definition of AI as systems that optimize a 
measurable reward, much of the current debate around 
possible problems, ethical issues, and risks of AI focuses 
on optimization failures and mis-measured objectives. 
Social media algorithms might for example be criticized 
for maximizing short term click rates by providing click-
bait, rather than maximizing long-term engagement. 
Algorithms assigning risk-scores to defendants in court 
might be criticized for failing to maximize incarceration 
rates of future perpetrators. Language models might be 
criticized for failing to provide answers evaluated as 
helpful by humans.

In (Kasy, 2025), I argue that this focus on failures to 
optimize the intended objectives misses the key issue: 
Applications of AI are typically not controversial 
because AI failed to achieve its objective. They are 
instead controversial because the chosen objective 
itself is controversial. Put differently, there is not just 
one objective that AI might or might not successfully 
maximize. Instead, different people have different 
objectives, and automated decisions generate winners 
and losers. Who gets to choose the objectives of AI is 
thus the crucial question.

In practice, the objectives are chosen by those who 
control the necessary inputs of AI. Almost all modern AI 
is built on machine learning, that is, on the automated 
statistical analysis of large amounts of training data. The 
most common form of machine learning is supervised 
learning, or prediction. In supervised learning, outcomes 
or labels are predicted given features: Unionization 
might be predicted given job applicant portfolios; 
ad-clicks might be predicted given user histories; 
future police encounters might be predicted given a 
defendants‘ socioeconomic characteristics; whether 
a bombing target is at home might be predicted given 
mobile-phone based movement patterns.

Because so much of AI is based on prediction, the most 
important inputs of AI are the means of prediction - data, 
compute, expertise, and energy, in particular. Who 
controls these inputs controls AI.

 
Language Models

Applications of AI such as those described above are 

energy. I will take a closer look at the production function 
of AI, which relates inputs of data and compute to the 
average performance in terms of the AI‘s objective. I will 
draw on both statistical theory and empirical patterns 
observed by AI researchers in industry. These patterns, 
known as scaling laws in the deep learning literature, 
have guided the trajectory of the AI industry in recent 
years: They have motivated the massive scaling of data-
centers for the training and deployment of AI models, 
which has lead to the concentration of control over AI 
in a small number of hands.

An analysis of the production function of AI provides 
the foundation for a discussion of the political economy 
of AI, and of conflicts over control of data, compute, 
and expertise.Externalities and market power are 
intrinsic features of this technology. I conclude with 
some proposals regarding how we might implement 
democratic control of the means of prediction, to give 
affected stakeholders a say over AI objectives, and to 
ensure broadly beneficial uses of AI.

Optimization Errors and 
Optimization Objectives
What is “artificial intelligence” (AI)? Public perceptions 
have been subject to big swings - from thinking of AI 
as an obscure academic niche field, to AI as everything 
relating to data, and back to a narrower conception of AI 
as language modeling. For our discussion here, it will be 
most useful to think of AI as the construction of systems 
which maximize a measurable objective (reward). Such 
systems take data as an input and produce chosen 
actions as an output. This is the definition provided by 
textbooks on AI, e.g. (Russell & Norvig, 2016).

There are many examples where AI, in this sense, is used 
in socially consequential and controversial settings. 
This includes the algorithmic management of gig-
workers, and the automatic screening of job candidates 
to filter out applicants at risk of unionization. This 
includes ad targeting, and the filtering and selection 
of social media feeds to maximize engagement by 
promoting emotionalizing (political) content. This 
includes predictive policing and incarceration, and the 
jailing of defendants for crimes not yet committed. And 
this includes the automated choice of bombing targets 
and times, for instance by the systems “Lavender” and 
“Where is Daddy” in Gaza (Abraham, 2024). These 
systems were
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the next word on the internet, and (2) the ability to 
make predictions that get high ratings, according to 
the criteria specified for human feedback. It is in this 
second stage that owner values and objectives become 
most explicitly incorporated. At the time of writing, for 
instance, we could witness the transformation of Grok, 
the LLM controlled by Elon Musk, into a chatbot that 
regularly produces far-right and antisemitic posts.

Scaling Laws and the Production 
Function of AI
AI models based on supervised learning need training 
data, and they need compute. Availability of both of 
these inputs is a binding constraint in practice. To 
understand the

relative importance of these different inputs, it is 
important to analyze the production function of AI. This 
production function of AI is a well-defined object: 
Because any AI system has an explicitly specified 
objective (reward), we can evaluate its output in terms of 
the average reward that it achieves. We can furthermore 
ask how performance in terms of this reward relates to 
the available inputs of data and compute.

I will first sketch the nature of this relationship 
theoretically. To describe the production function 
of AI, we need to review the concepts of overfitting, 
underfitting, and model complexity. I will then discuss the 
empirical counterpart of this relationship, which has 
received considerable attention in the industry. I lastly 
review how the estimated production function of AI has 
informed decisions in the AI industry over the last few 
years.

Theory of Scaling Laws

Statistical theory provides surprisingly specific 
characterizations of the production function of AI. 
In supervised learning, where the goal is to make 
predictions for new observations, the objective is 
to make small, or infrequent, prediction errors. For a 
given learning algorithm (prediction method), we can 
decompose the prediction error into two parts:

There is, first, the predictor variance. This is due to 
random fluctuations in the training data. An algorithm 
with a lot of variance is prone to overfitting - it erroneously 

both widespread and socially consequential, but not 
necessarily the most visible. Much of public attention 
in recent years has instead focused on large language 
models (LLMs), and on applications based on these, 
such as ChatGPT by OpenAI, or Claude by Anthropic.

Large language models are, in essence, statistical 
prediction models for the next word in a text, given 
the preceding words (Vaswani et al., 2017; Jurafsky & 
Martin, 2023). They are trained on very large quantities 
of text; by now, essentially the entire internet, including 
transcribed Youtube videos. These LLMs also have a very 
large number of parameters, on the order of 100 billion 
at the time of writing (https://en.wikipedia.org/wiki/
Large_language_model). LLMs are trained iteratively, 
using a method called stochastic gradient descent (Bottou 
et al., 2018), until predictions stop improving for a hold 
out sample of data points that are not used directly in the 
training process.

The foundation models trained in this way are very 
powerful - they are essentially a compressed version 
of the entire internet (Chiang, 2023). But that is also 
where one of their key problems lies: The internet has 
many dark corners. These foundation models are quite 
prone to produce anything from genocidal propaganda 
to child sexual abuse materials. For this reason, these 
foundation models cannot be directly used for any 
application. Instead, they need to be post-trained, 
using human annotations. The process where language 
models are post-trained to predict responses that are 
flagged as “helpful” or “harmless” by human annotators 
is known as reinforcement learning from human feedback 
(Bai et al., 2022). An entire industry has sprung up 
hiring precarious, low wage workers in countries such 
as Venezuela or Kenya, who spend their days reading 
LLM generated descriptions of violence and abuse, 
flagging them as problematic where appropriate (Hao, 
2025), and bearing the psychological costs that this 
work entails. Another variant of the post-training 
approach involves training on problems with well-
defined solutions, from the domains of mathematics of 
coding. The LLMs are trained to predict the solutions of 
these problems, based on the problem description; the 
resulting capabilities have been branded as reasoning by 
the industry.

How does this description of LLMs fit into the general 
conception of AI as maximizing measurable rewards? 
The rewards that LLMs maximize during training are 
a weighted combination of (1) the ability to predict 
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extrapolates random fluctuations to new observations. 
As an algorithm gets more data, the variance goes down. 
That is why more data improves AI models.

There is, second, the predictor bias. This is typically due 
to the fact that the algorithm is too simple to faithfully 
reflect the true relationship between predictors and 
outcomes. A biased algorithm is prone to underfitting - it 
does not pick up on some patterns that are observable 
in the data. As an algorithm fits more complex models, 
the bias goes down - but the variance goes up. That 
is why more compute (which allows for more model 
complexity) improves AI models - but only if data is 
abundant.

Any good prediction algorithm needs to carefully trade 
off underfitting and overfitting, by adjusting model 
complexity in some way or other. This is illustrated 
in Figure 1 (reproduced from (Kasy, 2025)). Models 
with low complexity tend to underfit, and lead to high 
prediction errors in both the training data and for out-
of-sample observations (that were not used in training). 
As model complexity increases, prediction errors in the 
training data go down. But when complexity gets too 
large, the algorithm becomes prone to overfitting, and 
out-of-sample prediction performance deteriorates.

performance stops improving, the training algorithm 
stops.

What does this description tell us about the production 
function of AI? The key inputs for training a model, such 
as a deep neural network, are (1) data, with a number 
of observations D, and (2) compute, as measured 
by the number of computational operations C. The 
necessary compute for training in turn is roughly equal 
to the number of model parameters (size of the neural 
network) N, times the number of training steps S,  
C = N � S. Deep learning practitioners acquire as much 
data D as they can, choose a model size N, and then train 
for a number of steps S determined by early stopping - 
or until they exceed their available budget of compute. 
They are thus interested in the production function  
L(N, D), which maps model size and data size into 
expected prediction loss. Model size N is chosen as a 
function of the compute budget C, N = N(C), to optimize 
performance.

Statistical theory, as sketched above, tells us a few 
things about the functions L(N, D) and N(C): (1) As 
data D increases, for fixed model complexity, loss goes 
down, because variance (overfitting) is reduced, but 
with decreasing marginal returns to sample size. (2) As 
compute increases, if training is compute-constrained, 
then loss goes down, because bias (underfitting) is 
reduced, but with decreasing marginal returns to 
additional compute. (3) If compute is not a binding 
constraint, then complexity C should increase with data 
size D to optimally trade off bias and variance.

More careful analysis allows us to quantify these 
patterns based on the difficulty of the underlying 
prediction problem. Theoretical characterization of 
scaling laws is the subject of an active are in theoretical 
machine learning research; see e.g. (Bach, 2023) and 
(Lin et al., 2025).

Empirical Scaling Laws for LLMs

Do these theoretical predictions hold up empirically? 
This question has been of central importance for the 
AI industry, especially since its pivot to a singular focus 
on large (language) models from around 2020: These 
models have required billions of dollars of investment 
in both compute and data. An analysis of production 
functions has been key for industry decisions regarding 
the allocation of resources, and in determining the 

Figure 1  Prediction Error and Model Complexity

Source: Kasy (2025).

In deep learning, this tradeoff is typically resolved by 
using early stopping, where training time determines 
effective model complexity: The algorithm continuously 
updates the neural network parameters (using a 
method such as stochastic gradient descent) to improve 
insample prediction errors. Along the way, prediction 
performance out-of-sample is evaluated using data 
that were set aside from the start. When out-of-sample 
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expected returns (in terms of model capability) for 
large investments.

A series of papers, mostly authored by researchers at 
tech companies, has explored production functions 
for deep learning, by systematically varying the scale 
of model size N, compute C, and data size D. An early 
and very influential example is (Kaplan et al., 2020), by 
researchers at OpenAI. By fitting parametric models to 
expected loss, they obtained an empirical scaling law 
(production function) L(N, D), mapping inputs into 
predictive performance. In their experiments, a variety 
of architectural choices regarding how to structure 
the neural network used, such as depth versus width, 
appeared to be only of secondary importance.

These empirical patterns have since been revisited by 
a series of studies, such as (Hoffmann et al., 2022) at 
Google DeepMind, who proposed a production function 
(scaling law) of the form

where α = 0.34 and 𝛽 = 0.28. This law tells us, in 
particular, how much predictive performance can be 
improved by scaling compute N, and also gives a lower 
bound  which can not be crossed regardless the scale 
of inputs, given the inherent entropy of language.

More recently, (Muennighoff et al., 2025) provide an 
empirical analysis in the case where data is the binding 
constraint, rather than compute - which is where 
language modeling finds itself at the moment.

Regardless of these various revisions, the basic point 
has held: predictive performance scales with compute 
and data, but with decreasing marginal returns. 
Extrapolation suggested that very good performance 
could be achieved by scaling both compute and 
data, Reversely, the winner in a commercial race to 
dominate the AI industry needed to invest in acquiring 
both compute and data at a massive scale; dominance 
was not to be achieved by smart ideas around 
algorithm design alone.

The Scramble for Scale
This recognition of empirical scaling laws has triggered 
a massive scramble for scaling large language models 
since around 2020. Both the number of training tokens D 

(tokens are sub-divisions of words; so this corresponds 
roughly to number of words), and the number of model 
parameters N, has increased exponentially. Figure 2 
(reproduced again from (Kasy, 2025), based on data from 
Wikipedia, “Large Language Model,” accessed October 
1, 2024, https://en.wikipedia.org/wiki/Large_language_
model) illustrates this scramble for dominance in the 
AI industry (note the logarithmic vertical scale on both 
plots!). This figure plots the number of training tokens 
D and the number of model parameters for the leading 
large language models, by model release date.

Figure 2a  Number of Training Tokens over Time

Source: Kasy (2025), Note logarithmic scale on both plots.

Figure 2b  Number of Parameters over Time
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has been an attempt to scale compute not at training 
time (as described above, which has decreasing returns 
for fixed data size), but instead at inference time - 
whenever a user submits a prompt to the model. All of 
these have yielded some improvements, but they will 
not overcome the fundamental limits of scaling when 
data is, ultimately, limited.

Moving beyond language models and turning our 
focus back to the many other socially consequential 
applications of AI, there is great variation in terms 
of the potential for an approach based on statistical 
learning. In domains where data is more limited than 
for language modeling, data can be expected to be the 
binding constraint, rather than compute. The potential 
for machine learning approaches is fundamentally 
governed by the amount of potentially available data, 
relative to the complexity of the underlying prediction 
problem. This holds regardless of the specific machine 
learning approach or model class used.

We can see this in a number of domains where the 
promise of machine learning has not been borne out, 
thus far. One example is genomics. After the initial 
excitement around the Human Genome Project in the 
early 2000s, many of the promised medical and scientific 
breakthroughs have not materialized (Ball, 2023). With 
hindsight, that might be not all that surprising: Given the 
number of genes in the human genome, and given that 
most biological processes involve complex interactions 
of multiple genes and environmental factors (contra 
the Mendelian model of one gene corresponding to one 
„trait“), the amount of observations needed for reliable 
predictive patterns greatly exceeds the number of living 
humans, whose genomes could possibly be sequenced. 
An intermediate example are self-driving cars. Despite 
partial successes based on complicated systems that 
combine many approaches, the promise of statistical 
learning leading to safe autonomous driving has not 
materialized thus far. Companies such as Tesla have 
however collected billions of hours of driving footage 
at this point, so maybe predictive performance will 
be sufficient for practical use at some point. Another 
example is macroeconomic forecasting: There is 
ultimately only one observation that we have of the US 
in the aftermath of the 2008 financial crisis; no amount 
of algorithmic tinkering will overcome the limitations 
this imposes on statistical extrapolation.

There are, of course, many other domains where the 
relationship of data-availability to complexity turns out 

This scramble for scale has been extremely costly. Open 
AI, for instance, has raised a total of $57.9 Billion  at 
the time of writing (https://tracxn.com/d/companies/
openai/	kElhSG7uVGeFk1i71Co9-nwFtmtyMVT7f-
YHMn4TFBg, accessed February 10, 2026), much 
of which was spent on compute. The required data 
centers, for both training and deployment, have a large 
environmental footprint in terms of both energy and 
freshwater use (needed for cooling) (https://ig.ft.com/
ai-data-centres/, accessed February 10, 2026). This 
scramble for scale has also made it impossible for any 
non-commercial entities to compete, crowding out 
much of the diverse academic AI ecosystem existing 
previously.

Future Potential

Production functions can guide corporate allocation 
decisions. But they can also help us answer questions of 
broader societal relevance: (1) What future improvements 
can we expect from pursuing this technological path? 
(2) Who is going to reap the economic benefits of this 
technology? And (3) what levers do various actors have 
to reclaim democratic control of this technology in the 
public interest? We first discuss (1), before turning to 
(2) and (3) in the following section.

What is the likely trajectory of AI in the coming years? 
The most fundamental constraint, both for language 
models and for machine learning across a range of 
domains, is data availability. Once all the text on the 
internet, all existing books, and all auto-transcribed 
Youtube videos have been fed into the training data, 
there is not much language data left that might be 
acquired.

This has prompted a number of reactions in the industry. 
First, more and more data of lower quality has been 
fed into these models, including data from the darkest 
corners of the internet. But that approach, too, seems 
to have largely run its course. Second, data „manually“ 
annotated by humans, for specific tasks, has been 
collected, to create chat-bots such as ChatGPT. This 
has been crucial for turning generic language models 
into usable tools, but it is also time consuming and 
rather costly, and not easily scalable. Relatedly, curated 
problems with known true solution - in particular in 
math and in coding - have been used to guide language 
models towards problem-solving abilities. Third, there 
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2014) in computer science provides a coherent 
formalization of how to make individuals indifferent 
about contributing their data, regardless of what 
downstream decisions might be made based on 
the output of the mechanism. This turns out to be 
equivalent to protecting the identity of individuals who 
contribute data to some dataset. Differential privacy 
is a property of mechanisms that release information 
about a dataset. Differential privacy requires that no 
one with access to the output of the mechanism can 
draw inferences about whether a specific individual 
is included in the dataset or not - regardless of what 
additional information or computational tools they 
possess. (Formally, these statements only have to hold 
with sufficiently high probability.)

There are many mechanisms that guarantee differential 
privacy. Any such mechanism needs to employ some 
degree of randomization. Importantly, as has been shown 
in machine learning theory, it is possible for supervised 
learning algorithms to learn predictive patterns without 
violating differential privacy. Consider the example of 
a linear regression, where an outcome Y is predicted 
using a linear function of features X with coefficients 𝛽, 
Ŷ = X � 𝛽. Then it is possible to get a reliable estimate of 
𝛽 without revealing any information about whether any 
particular value of (Yi, Xi) was in the data (cf. ( Dwork & 
Roth, 2014), chapter 11).

The upshot of these theoretical results is that machine 
learning is all about the patterns (𝛽, in the regression 
example), not about the individual observations 
(Yi, Xi). This implies that differential privacy can be 
implemented without affecting any down-stream 
decisions based on machine-learning and AI. We can 
in particular have individual-property rights over data, 
and implement differentially privacy data-collection to 
make it individually rational to share, and yet leave all 
down-stream harms and benefits of AI unaffected!

To give an example, a health insurance company might 
learn how to predict certain diseases based on publicly 
available features Xi. Any individual might rationally be 
willing to share their health data, if these are protected 
by a differentially private mechanism. But after the 
insurance learns to predict the presence of the disease, 
all affected patients will be excluded from health 
insurance.

This is an example of what economists have called data 
externalities (Acemoglu et al., 2022). Because learning is 

to be more favorable. One extreme example is game-
play in games such as go or chess, which has been solved 
using deep reinforcement learning (François-Lavet et 
al., 2018) by generating vast amounts of games based on 
self-play, which became possible once enough compute 
was available (Silver et al., 2017).

The Scramble for Data
Who gets to control the relevant inputs of AI, and thereby 
gets to control the objectives that are maximized? Who 
are possible agents of change, who have the ability and 
willingness to align the objectives of AI with socially 
desirable goals? What existing and legal instruments can 
be used to promote such alignment. What ideological 
obfuscations prevent us from doing so? (Kasy , 2025) 
discusses all these questions. Here I want to focus 
only on the question of control over data that describe 
individuals. Such individual data are the data that matter 
most for socially contested applications of AI.

Privacy and Data Externalities

Control over individual-level data is intimately 
connected to the question of privacy. The most well-
known piece of privacy legislation is the General Data 
Protection Regulation (GDPR) of the European Union, 
which went into effect across Europe in 2018 and has 
since been adopted, with minor modifications, in a 
range of other countries. The GDPR gives wide-ranging 
control rights to individuals (data subjects) regarding 
data that concern them. We can interpret the GDPR as 
granting individual property rights over data. Individuals 
can withhold their data, have them deleted, or share 
them at will, in exchange for services or other material 
benefits.

When such individual property rights over data are in 
place and effectively enforced, then data can only be 
collected if it is individually rational to share them. 
Companies that want to collect data, for example for 
the purpose of targeted advertising or individualized 
pricing, thus need to create mechanisms where 
individuals voluntarily share private information. 
Computer science has studied the creation of such 
mechanisms.

The literature on differential privacy (Dwork & Roth, 
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to grow their user base. Then they actively prevent 
interoperability (which would technically be no problem 
to maintain) to create network effects. Once their user 
base is large enough, this by itself provides a surplus 
relative to alternative platforms. That surplus is then 
extracted, in particular in the form of data collection 
and surveillance.

Democratic Control
To recap, artificial intelligence is automated decision-
making to maximize some measurable objective. The 
most important question about AI is how this objective 
is chosen, and by whom. In practice, the objective 
is determined by those who control the means of 
prediction, in particular data and compute, as well 
as expertise and energy. In order to better align AI 
with socially desirable objectives, we need to create 
institutions that give those who are affected by AI 
decisions a say over the choice of the objective that is 
maximized.

Market-based mechanisms won‘t allow us to achieve 
this goal. Machine learning and AI are fundamentally 
about the externalities of data collection and pattern 
recognition, so that individual property rights won‘t 
allow us to regulate the harms and benefits of AI. Many 
applications of AI furthermore involve distributional 
conflict, which requires a social negotiation of the 
harms and benefits accruing to different people.

Consider social media: Algorithms that curate social 
media feeds typically maximize engagement. They 
often do so by promoting emotionalizing political 
content, which arguably undermines the democratic 
process and the possibility public deliberation of 
important questions. Consider individualized pricing 
and gig work platforms: Much corporate effort goes into 
data-collection for the purpose of estimating individual 
consumer demand or labor supply of gig workers. 
Machine learning then allows these companies to set 
individualized prices that maximize platform surplus, 
while extracting all consumer or worker surplus. 
Consider workplace automation: AI might be used in 
ways that either substitute or augment human workers, 
shifting marginal productivities up or down. How AI 
is deployed thus impacts whether it leads to shared 
prosperity or to a further concentration of wealth. The 
absence of market-based mechanisms to address social 
harms is even more glaring in the case of predictive 

all about externalities, individual data property rights 
are toothless for managing the harms and benefits of 
AI. This has led to calls for more collective forms of data 
governance (Viljoen, 2021); I will return to this point in 
the conclusion.

Artificial Natural Monopolies and 
Network Effects

There is a second reason why individual data property 
rights do not provide a solution. Even leaving aside the 
question of data externalities, we might be practically 
compelled to use certain platforms that collect our 
data, because being on the platform provides a positive 
benefit relative to any outside option or competing 
platform.

This is especially obvious for social networks: These 
networks are useful and enjoyable to the extent that 
they allow us to connect to other people or creators on 
the same platform. The platforms thus create network 
effects. Because it is almost impossible to collectively 
coordinate to switch to a different platform, these 
platforms look like natural monopolies; they are 
more useful the larger their user base is. This, in turn, 
implies that there is a surplus for any user who is on the 
platform, relative to the outside option. That surplus 
can be extracted by the platform by implementing 
surveillance and data-collection, even when surveillance 
is individually costly.

But are platforms really natural monopolies? Not quite: 
The network effects which sustain them are artificially 
and intentionally created - we might call them artificial 
natural monopolies. In fact, there is no technical reason 
whatsoever which prevents users on one platform from 
connecting with those on another platform. Consider, 
for comparison, how phone providers operate. When 
you want to call your friends, they don‘t have to be 
using the same phone provider as you - phone networks 
are said to be interoperable. As a consequence, you can 
choose a phone plan without consideration of network 
effects, and there is actual competition between phone 
providers.

The network effects of digital platforms, from social 
media to gig work platforms, are thus artificially 
created. Doctorow (2023) coined the memorable term 
enshittification for the trajectory that such platforms 
undergo: At first, they provide quality service for free, 
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incarceration or AI-based warfare and assassinations.

How, then, could we start building institutions for 
the democratic control of AI? We need effective legal 
frameworks that give stakeholders a voice - whether for 
social media-platforms, gig work, workplace automation, 
or predictive policing. Such voice, furthermore, cannot 
only be based on a check on a national ballot every four 
years.

Instead, it takes active deliberation and informed public 
debate across these domains. Such debate is possible. 
While the technical details of AI might be complicated, 
the fact that it maximizes well-specified measurable 
objectives is not.

Deliberation and decision-making across these domains 
could be based on various institutional arrangements. 
One attractive set of proposals involves sortition 
(Landemore, 2020), as familiar from jury duty: A randomly 
selected and representative set of stakeholders gets to 
meet regularly, to debate and acquire information, and 
to then make decisions. Another interesting option is 
liquid democracy: Rather than relying on a separate class 
of professional representatives, everyone is entitled 
to vote on important issues, or alternatively delegate 
their vote to any other individual, who in turn might 
delegate further. Digital tools can be used to facilitate 
this process.

This, then, is the main task for our future: To develop 
and implement institutions and mechanism for the 
democratic control the goals of AI by controlling the 
means of prediction. This is the only way for maintaining 
collective self-determination, and for aligning the 
objectives of AI with those of society at large, to avoid 
a dystopian future where we are ruled by AI systems 
acting in the interests of a small oligarchy.

Maximilian Kasy is a Professor of Economics at 
the University of Oxford. Contact: maximilian.kasy@
economics.ox.ac.uk
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