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e The real Al governance challenge: Who gets to decide what Al systems optimize for?
Current debates miss that Al conflicts are between different groups of people, not humans

vs. machines.

e Power flows from control of Al inputs: Those who control the means of prediction (data,
computing power, expertise, and energy) determine Al objectives.

e Current governance approaches fail: Individual privacy rights and market mechanisms
can’t address Al’s collective harms and benefits.

e Democratic control is the solution: Give stakeholders affected by Al decisions a voice in

setting Al objectives.

Introduction

How should we regulate AI? This debate is often
dominated by arguments between “AI boomers” and “Al
doomers” (Hao, 2025). AI boomers claim that building
“artificial general intelligence” (AGI) is the last problem
that we need to solve. Once AGI has been built, it will
then take care of the rest - continuously improving itself,
while at the same time curing cancer, solving climate
change, etc. Al doomers similarly believe that AGI, once
it has reached the threshold of human intelligence, will
continue to improve itself, but will ultimately - driven
by self-preservation - eliminate humanity.

In my book (Kasy, 2025) (University of Chicago Press,
October 2025), I argue that we need to step outside of
this false dichotomy between AI boomers and doomers.
Both boomers and doomers share problematic implicit
assumptions: Both sides assume that the advent of Al
is inevitable, intelligence is one-dimensional, there
is a threshold of human intelligence, and beyond this
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threshold AI will exponentially self-improve. And both
sides understand potential problems with AI only
as conflicts between human and machine, which are
described as problems of value alignment.

Against both boomers and doomers, I argue that the
progress of Al is not fate but rather a product of human
choices. The key conflicts are not between humans and
machines but between different people. The answer
to these conflicts is shared democratic control of Al
and of the objectives that it pursues: Those impacted
by algorithmic decisions need to have a say over these
decisions.

In the following, I review and expand on this argument.
I first discuss how all of Al involves optimization of
some measurable objective. Social conflicts around AI
are about the choice of these optimization objectives.

I then analyze how control of these objectives is based
on control of the inputs into Al - the means of prediction -
which include data and compute, but also expertise and

econfip.org



energy. I will take a closer look at the production function
of Al, which relates inputs of data and compute to the
average performance in terms of the AI‘s objective. I will
draw on both statistical theory and empirical patterns
observed by Al researchers in industry. These patterns,
known as scaling laws in the deep learning literature,
have guided the trajectory of the Al industry in recent
years: They have motivated the massive scaling of data-
centers for the training and deployment of AI models,
which has lead to the concentration of control over Al
in a small number of hands.

An analysis of the production function of AI provides
the foundation for a discussion of the political economy
of AI, and of conflicts over control of data, compute,
and expertise.Externalities and market power are
intrinsic features of this technology. I conclude with
some proposals regarding how we might implement
democratic control of the means of prediction, to give
affected stakeholders a say over Al objectives, and to
ensure broadly beneficial uses of Al

Optimization Errors and
Optimization Objectives

What is “artificial intelligence” (AI)? Public perceptions
have been subject to big swings - from thinking of Al
as an obscure academic niche field, to AI as everything
relating to data, and back to a narrower conception of Al
as language modeling. For our discussion here, it will be
most useful to think of Al as the construction of systems
which maximize a measurable objective (reward). Such
systems take data as an input and produce chosen
actions as an output. This is the definition provided by
textbooks on Al e.g. (Russell & Norvig, 2016).

There are many examples where Al in this sense, is used
in socially consequential and controversial settings.
This includes the algorithmic management of gig-
workers, and the automatic screening of job candidates
to filter out applicants at risk of unionization. This
includes ad targeting, and the filtering and selection
of social media feeds to maximize engagement by
promoting emotionalizing (political) content. This
includes predictive policing and incarceration, and the
jailing of defendants for crimes not yet committed. And
this includes the automated choice of bombing targets
and times, for instance by the systems “Lavender” and
“Where is Daddy” in Gaza (Abraham, 2024). These
systems were

used to select individuals as targets and predict when
fathers would be at home with their children, to bomb
them together.

Based on the definition of Al as systems that optimize a
measurable reward, much of the current debate around
possible problems, ethical issues, and risks of AI focuses
on optimization failures and mis-measured objectives.
Social media algorithms might for example be criticized
for maximizing short term click rates by providing click-
bait, rather than maximizing long-term engagement.
Algorithms assigning risk-scores to defendants in court
might be criticized for failing to maximize incarceration
rates of future perpetrators. Language models might be
criticized for failing to provide answers evaluated as
helpful by humans.

In (Kasy, 2025), I argue that this focus on failures to
optimize the intended objectives misses the key issue:
Applications of AI are typically not controversial
because AI failed to achieve its objective. They are
instead controversial because the chosen objective
itself is controversial. Put differently, there is not just
one objective that AI might or might not successfully
maximize. Instead, different people have different
objectives, and automated decisions generate winners
and losers. Who gets to choose the objectives of Al is
thus the crucial question.

In practice, the objectives are chosen by those who
control the necessary inputs of AI. Almost all modern AI
is built on machine learning, that is, on the automated
statistical analysis of large amounts of training data. The
most common form of machine learning is supervised
learning, or prediction. In supervised learning, outcomes
or labels are predicted given features: Unionization
might be predicted given job applicant portfolios;
ad-clicks might be predicted given user histories;
future police encounters might be predicted given a
defendants‘ socioeconomic characteristics; whether
a bombing target is at home might be predicted given
mobile-phone based movement patterns.

Because so much of Al is based on prediction, the most
important inputs of Al are the means of prediction - data,
compute, expertise, and energy, in particular. Who
controls these inputs controls Al

Language Models

Applications of AI such as those described above are
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both widespread and socially consequential, but not
necessarily the most visible. Much of public attention
in recent years has instead focused on large language
models (LLMs), and on applications based on these,
such as ChatGPT by OpenAl, or Claude by Anthropic.

Large language models are, in essence, statistical
prediction models for the next word in a text, given
the preceding words (Vaswani et al., 2017; Jurafsky &
Martin, 2023). They are trained on very large quantities
of text; by now, essentially the entire internet, including
transcribed Youtube videos. These LLMs also have a very
large number of parameters, on the order of 100 billion
at the time of writing (https://en.wikipedia.org/wiki/
Large_language_model). LLMs are trained iteratively,
using a method called stochastic gradient descent (Bottou
et al., 2018), until predictions stop improving for a hold
out sample of data points that are not used directly in the
training process.

The foundation models trained in this way are very
powerful - they are essentially a compressed version
of the entire internet (Chiang, 2023). But that is also
where one of their key problems lies: The internet has
many dark corners. These foundation models are quite
prone to produce anything from genocidal propaganda
to child sexual abuse materials. For this reason, these
foundation models cannot be directly used for any
application. Instead, they need to be post-trained,
using human annotations. The process where language
models are post-trained to predict responses that are
flagged as “helpful” or “harmless” by human annotators
is known as reinforcement learning from human feedback
(Bai et al,, 2022). An entire industry has sprung up
hiring precarious, low wage workers in countries such
as Venezuela or Kenya, who spend their days reading
LLM generated descriptions of violence and abuse,
flagging them as problematic where appropriate (Hao,
2025), and bearing the psychological costs that this
work entails. Another variant of the post-training
approach involves training on problems with well-
defined solutions, from the domains of mathematics of
coding. The LLMs are trained to predict the solutions of
these problems, based on the problem description; the
resulting capabilities have been branded as reasoning by
the industry.

How does this description of LLMs fit into the general
conception of Al as maximizing measurable rewards?
The rewards that LLMs maximize during training are
a weighted combination of (1) the ability to predict

the next word on the internet, and (2) the ability to
make predictions that get high ratings, according to
the criteria specified for human feedback. It is in this
second stage that owner values and objectives become
most explicitly incorporated. At the time of writing, for
instance, we could witness the transformation of Grok,
the LLM controlled by Elon Musk, into a chatbot that
regularly produces far-right and antisemitic posts.

Scaling Laws and the Production
Function of Al

AI models based on supervised learning need training
data, and they need compute. Availability of both of
these inputs is a binding constraint in practice. To
understand the

relative importance of these different inputs, it is
important to analyze the production function of Al. This
production function of AI is a well-defined object:
Because any AI system has an explicitly specified
objective (reward), we can evaluate its output in terms of
the average reward that it achieves. We can furthermore
ask how performance in terms of this reward relates to
the available inputs of data and compute.

I will first sketch the nature of this relationship
theoretically. To describe the production function
of AI, we need to review the concepts of overfitting,
underfitting, and model complexity. I will then discuss the
empirical counterpart of this relationship, which has
received considerable attention in the industry. I lastly
review how the estimated production function of Al has
informed decisions in the AI industry over the last few
years.

Theory of Scaling Laws

Statistical theory provides surprisingly specific
characterizations of the production function of Al
In supervised learning, where the goal is to make
predictions for new observations, the objective is
to make small, or infrequent, prediction errors. For a
given learning algorithm (prediction method), we can
decompose the prediction error into two parts:

There is, first, the predictor variance. This is due to
random fluctuations in the training data. An algorithm
withalotof varianceis prone to overfitting - it erroneously
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extrapolates random fluctuations to new observations.
As an algorithm gets more data, the variance goes down.
That is why more data improves Al models.

There is, second, the predictor bias. This is typically due
to the fact that the algorithm is too simple to faithfully
reflect the true relationship between predictors and
outcomes. A biased algorithm is prone to underfitting - it
does not pick up on some patterns that are observable
in the data. As an algorithm fits more complex models,
the bias goes down - but the variance goes up. That
is why more compute (which allows for more model
complexity) improves Al models - but only if data is
abundant.

Any good prediction algorithm needs to carefully trade
off underfitting and overfitting, by adjusting model
complexity in some way or other. This is illustrated
in Figure 1 (reproduced from (Kasy, 2025)). Models
with low complexity tend to underfit, and lead to high
prediction errors in both the training data and for out-
of-sample observations (that were not used in training).
As model complexity increases, prediction errors in the
training data go down. But when complexity gets too
large, the algorithm becomes prone to overfitting, and
out-of-sample prediction performance deteriorates.

Figure 1 Prediction Error and Model Complexity
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Source: Kasy (2025).

In deep learning, this tradeoff is typically resolved by
using early stopping, where training time determines
effective model complexity: The algorithm continuously
updates the neural network parameters (using a
method such as stochastic gradient descent) to improve
insample prediction errors. Along the way, prediction
performance out-of-sample is evaluated using data
that were set aside from the start. When out-of-sample

Overfitting

performance stops improving, the training algorithm
stops.

What does this description tell us about the production
function of AI? The key inputs for training a model, such
as a deep neural network, are (1) data, with a number
of observations D, and (2) compute, as measured
by the number of computational operations C. The
necessary compute for training in turn is roughly equal
to the number of model parameters (size of the neural
network) N, times the number of training steps S,
C = N - S. Deep learning practitioners acquire as much
data D as they can, choose a model size N, and then train
for a number of steps S determined by early stopping -
or until they exceed their available budget of compute.
They are thus interested in the production function
L(N, D), which maps model size and data size into
expected prediction loss. Model size N is chosen as a
function of the compute budget C, N = N(C), to optimize
performance.

Statistical theory, as sketched above, tells us a few
things about the functions L(N, D) and N(C): (1) As
data D increases, for fixed model complexity, loss goes
down, because variance (overfitting) is reduced, but
with decreasing marginal returns to sample size. (2) As
compute increases, if training is compute-constrained,
then loss goes down, because bias (underfitting) is
reduced, but with decreasing marginal returns to
additional compute. (3) If compute is not a binding
constraint, then complexity C should increase with data
size D to optimally trade off bias and variance.

More careful analysis allows us to quantify these
patterns based on the difficulty of the underlying
prediction problem. Theoretical characterization of
scaling laws is the subject of an active are in theoretical
machine learning research; see e.g. (Bach, 2023) and
(Lin et al., 2025).

Empirical Scaling Laws for LLMs

Do these theoretical predictions hold up empirically?
This question has been of central importance for the
Al industry, especially since its pivot to a singular focus
on large (language) models from around 2020: These
models have required billions of dollars of investment
in both compute and data. An analysis of production
functions has been key for industry decisions regarding
the allocation of resources, and in determining the
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expected returns (in terms of model capability) for
large investments.

A series of papers, mostly authored by researchers at
tech companies, has explored production functions
for deep learning, by systematically varying the scale
of model size N, compute C, and data size D. An early
and very influential example is (Kaplan et al., 2020), by
researchers at OpenAl. By fitting parametric models to
expected loss, they obtained an empirical scaling law
(production function) L(N, D), mapping inputs into
predictive performance. In their experiments, a variety
of architectural choices regarding how to structure
the neural network used, such as depth versus width,
appeared to be only of secondary importance.

These empirical patterns have since been revisited by
a series of studies, such as (Hoffmann et al., 2022) at
Google DeepMind, who proposed a production function
(scaling law) of the form

A B
L(N, D) =—+—+1Lg

where a = 0.34 and f§ = 0.28. This law tells us, in
particular, how much predictive performance can be
improved by scaling compute N, and also gives a lower
bound L which can not be crossed regardless the scale
of inputs, given the inherent entropy of language.

More recently, (Muennighoff et al., 2025) provide an
empirical analysis in the case where data is the binding
constraint, rather than compute - which is where
language modeling finds itself at the moment.

Regardless of these various revisions, the basic point
has held: predictive performance scales with compute
and data, but with decreasing marginal returns.
Extrapolation suggested that very good performance
could be achieved by scaling both compute and

data, Reversely, the winner in a commercial race to
dominate the AI industry needed to invest in acquiring
both compute and data at a massive scale; dominance
was not to be achieved by smart ideas around
algorithm design alone.

The Scramble for Scale

This recognition of empirical scaling laws has triggered
a massive scramble for scaling large language models
since around 2020. Both the number of training tokens D

(tokens are sub-divisions of words; so this corresponds
roughly to number of words), and the number of model
parameters N, has increased exponentially. Figure 2
(reproduced again from (Kasy, 2025), based on data from
Wikipedia, “Large Language Model,” accessed October
1, 2024, https://en.wikipedia.org/wiki/Large_language_
model) illustrates this scramble for dominance in the
Al industry (note the logarithmic vertical scale on both
plots!). This figure plots the number of training tokens
D and the number of model parameters for the leading
large language models, by model release date.

Figure 2a Number of Training Tokens over Time
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This scramble for scale has been extremely costly. Open
Al for instance, has raised a total of $57.9 Billion at
the time of writing (https://tracxn.com/d/companies/
openai/kElIhSG7uVGeFk1i71Co9-nwFtmtyMVT7{-
YHMn4TFBg, accessed February 10, 2026), much
of which was spent on compute. The required data
centers, for both training and deployment, have a large
environmental footprint in terms of both energy and
freshwater use (needed for cooling) (https://ig.ft.com/
ai-data-centres/, accessed February 10, 2026). This
scramble for scale has also made it impossible for any
non-commercial entities to compete, crowding out
much of the diverse academic Al ecosystem existing
previously.

Future Potential

Production functions can guide corporate allocation
decisions. But they can also help us answer questions of
broadersocietalrelevance: (1) Whatfutureimprovements
can we expect from pursuing this technological path?
(2) Who is going to reap the economic benefits of this
technology? And (3) what levers do various actors have
to reclaim democratic control of this technology in the
public interest? We first discuss (1), before turning to
(2) and (3) in the following section.

What is the likely trajectory of Al in the coming years?
The most fundamental constraint, both for language
models and for machine learning across a range of
domains, is data availability. Once all the text on the
internet, all existing books, and all auto-transcribed
Youtube videos have been fed into the training data,
there is not much language data left that might be
acquired.

This has prompted a number of reactions in the industry.
First, more and more data of lower quality has been
fed into these models, including data from the darkest
corners of the internet. But that approach, too, seems
to have largely run its course. Second, data ,,manually*
annotated by humans, for specific tasks, has been
collected, to create chat-bots such as ChatGPT. This
has been crucial for turning generic language models
into usable tools, but it is also time consuming and
rather costly, and not easily scalable. Relatedly, curated
problems with known true solution - in particular in
math and in coding - have been used to guide language
models towards problem-solving abilities. Third, there

has been an attempt to scale compute not at training
time (as described above, which has decreasing returns
for fixed data size), but instead at inference time -
whenever a user submits a prompt to the model. All of
these have yielded some improvements, but they will
not overcome the fundamental limits of scaling when
data is, ultimately, limited.

Moving beyond language models and turning our
focus back to the many other socially consequential
applications of AI, there is great variation in terms
of the potential for an approach based on statistical
learning. In domains where data is more limited than
for language modeling, data can be expected to be the
binding constraint, rather than compute. The potential
for machine learning approaches is fundamentally
governed by the amount of potentially available data,
relative to the complexity of the underlying prediction
problem. This holds regardless of the specific machine
learning approach or model class used.

We can see this in a number of domains where the
promise of machine learning has not been borne out,
thus far. One example is genomics. After the initial
excitement around the Human Genome Project in the
early 2000s, many of the promised medical and scientific
breakthroughs have not materialized (Ball, 2023). With
hindsight, that might be not all that surprising: Given the
number of genes in the human genome, and given that
most biological processes involve complex interactions
of multiple genes and environmental factors (contra
the Mendelian model of one gene corresponding to one
Htrait), the amount of observations needed for reliable
predictive patterns greatly exceeds the number of living
humans, whose genomes could possibly be sequenced.
An intermediate example are self-driving cars. Despite
partial successes based on complicated systems that
combine many approaches, the promise of statistical
learning leading to safe autonomous driving has not
materialized thus far. Companies such as Tesla have
however collected billions of hours of driving footage
at this point, so maybe predictive performance will
be sufficient for practical use at some point. Another
example is macroeconomic forecasting: There is
ultimately only one observation that we have of the US
in the aftermath of the 2008 financial crisis; no amount
of algorithmic tinkering will overcome the limitations
this imposes on statistical extrapolation.

There are, of course, many other domains where the
relationship of data-availability to complexity turns out
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to be more favorable. One extreme example is game-
play in games such as go or chess, which has been solved
using deep reinforcement learning (Frangois-Lavet et
al., 2018) by generating vast amounts of games based on
self-play, which became possible once enough compute
was available (Silver et al., 2017).

The Scramble for Data

Who gets to control therelevant inputs of Al, and thereby
gets to control the objectives that are maximized? Who
are possible agents of change, who have the ability and
willingness to align the objectives of Al with socially
desirable goals? What existing and legal instruments can
be used to promote such alignment. What ideological
obfuscations prevent us from doing so? (Kasy , 2025)
discusses all these questions. Here I want to focus
only on the question of control over data that describe
individuals. Such individual data are the data that matter
most for socially contested applications of Al

Privacy and Data Externalities

Control over individual-level data is intimately
connected to the question of privacy. The most well-
known piece of privacy legislation is the General Data
Protection Regulation (GDPR) of the European Union,
which went into effect across Europe in 2018 and has
since been adopted, with minor modifications, in a
range of other countries. The GDPR gives wide-ranging
control rights to individuals (data subjects) regarding
data that concern them. We can interpret the GDPR as
granting individual property rights over data. Individuals
can withhold their data, have them deleted, or share
them at will, in exchange for services or other material
benefits.

When such individual property rights over data are in
place and effectively enforced, then data can only be
collected if it is individually rational to share them.
Companies that want to collect data, for example for
the purpose of targeted advertising or individualized
pricing, thus need to create mechanisms where
individuals voluntarily share private information.
Computer science has studied the creation of such
mechanisms.

The literature on differential privacy (Dwork & Roth,

2014) in computer science provides a coherent
formalization of how to make individuals indifferent
about contributing their data, regardless of what
downstream decisions might be made based on
the output of the mechanism. This turns out to be
equivalent to protecting the identity of individuals who
contribute data to some dataset. Differential privacy
is a property of mechanisms that release information
about a dataset. Differential privacy requires that no
one with access to the output of the mechanism can
draw inferences about whether a specific individual
is included in the dataset or not - regardless of what
additional information or computational tools they
possess. (Formally, these statements only have to hold
with sufficiently high probability.)

There are many mechanisms that guarantee differential
privacy. Any such mechanism needs to employ some
degree of randomization. Importantly, as has been shown
in machine learning theory, it is possible for supervised
learning algorithms to learn predictive patterns without
violating differential privacy. Consider the example of
a linear regression, where an outcome Y is predicted
using a linear function of features X with coefficients £,
¥ =X- B. Then it is possible to get a reliable estimate of
p without revealing any information about whether any
particular value of (Y, X)) was in the data (cf. ( Dwork &
Roth, 2014), chapter 11).

The upshot of these theoretical results is that machine
learning is all about the patterns (f, in the regression
example), not about the individual observations
(Y, X). This implies that differential privacy can be
implemented without affecting any down-stream
decisions based on machine-learning and AI. We can
in particular have individual-property rights over data,
and implement differentially privacy data-collection to
make it individually rational to share, and yet leave all
down-stream harms and benefits of Al unaffected!

To give an example, a health insurance company might
learn how to predict certain diseases based on publicly
available features X. Any individual might rationally be
willing to share their health data, if these are protected
by a differentially private mechanism. But after the
insurance learns to predict the presence of the disease,
all affected patients will be excluded from health
insurance.

This is an example of what economists have called data
externalities (Acemoglu et al., 2022). Because learning is
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all about externalities, individual data property rights
are toothless for managing the harms and benefits of
AL This has led to calls for more collective forms of data
governance (Viljoen, 2021); I will return to this point in
the conclusion.

Artificial Natural Monopolies and
Network Effects

There is a second reason why individual data property
rights do not provide a solution. Even leaving aside the
question of data externalities, we might be practically
compelled to use certain platforms that collect our
data, because being on the platform provides a positive
benefit relative to any outside option or competing
platform.

This is especially obvious for social networks: These
networks are useful and enjoyable to the extent that
they allow us to connect to other people or creators on
the same platform. The platforms thus create network
effects. Because it is almost impossible to collectively
coordinate to switch to a different platform, these
platforms look like natural monopolies; they are
more useful the larger their user base is. This, in turn,
implies that there is a surplus for any user who is on the
platform, relative to the outside option. That surplus
can be extracted by the platform by implementing
surveillance and data-collection, even when surveillance
is individually costly.

But are platforms really natural monopolies? Not quite:
The network effects which sustain them are artificially
and intentionally created - we might call them artificial
natural monopolies. In fact, there is no technical reason
whatsoever which prevents users on one platform from
connecting with those on another platform. Consider,
for comparison, how phone providers operate. When
you want to call your friends, they don‘t have to be
using the same phone provider as you - phone networks
are said to be interoperable. As a consequence, you can
choose a phone plan without consideration of network
effects, and there is actual competition between phone
providers.

The network effects of digital platforms, from social
media to gig work platforms, are thus artificially
created. Doctorow (2023) coined the memorable term
enshittification for the trajectory that such platforms
undergo: At first, they provide quality service for free,

to grow their user base. Then they actively prevent
interoperability (which would technically be no problem
to maintain) to create network effects. Once their user
base is large enough, this by itself provides a surplus
relative to alternative platforms. That surplus is then
extracted, in particular in the form of data collection
and surveillance.

Democratic Control

To recap, artificial intelligence is automated decision-
making to maximize some measurable objective. The
most important question about Al is how this objective
is chosen, and by whom. In practice, the objective
is determined by those who control the means of
prediction, in particular data and compute, as well
as expertise and energy. In order to better align Al
with socially desirable objectives, we need to create
institutions that give those who are affected by AI
decisions a say over the choice of the objective that is
maximized.

Market-based mechanisms won‘t allow us to achieve
this goal. Machine learning and AI are fundamentally
about the externalities of data collection and pattern
recognition, so that individual property rights won‘t
allow us to regulate the harms and benefits of AI. Many
applications of Al furthermore involve distributional
conflict, which requires a social negotiation of the
harms and benefits accruing to different people.

Consider social media: Algorithms that curate social
media feeds typically maximize engagement. They
often do so by promoting emotionalizing political
content, which arguably undermines the democratic
process and the possibility public deliberation of
important questions. Consider individualized pricing
and gig work platforms: Much corporate effort goes into
data-collection for the purpose of estimating individual
consumer demand or labor supply of gig workers.
Machine learning then allows these companies to set
individualized prices that maximize platform surplus,
while extracting all consumer or worker surplus.
Consider workplace automation: AI might be used in
ways that either substitute or augment human workers,
shifting marginal productivities up or down. How AI
is deployed thus impacts whether it leads to shared
prosperity or to a further concentration of wealth. The
absence of market-based mechanisms to address social
harms is even more glaring in the case of predictive
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incarceration or Al-based warfare and assassinations.

How, then, could we start building institutions for
the democratic control of AI? We need effective legal
frameworks that give stakeholders a voice - whether for
social media-platforms, gigwork, workplace automation,
or predictive policing. Such voice, furthermore, cannot
only be based on a check on a national ballot every four
years.

Instead, it takes active deliberation and informed public
debate across these domains. Such debate is possible.
While the technical details of AI might be complicated,
the fact that it maximizes well-specified measurable
objectives is not.

Deliberation and decision-making across these domains
could be based on various institutional arrangements.
One attractive set of proposals involves sortition
(Landemore,2020),asfamiliarfromjuryduty:Arandomly
selected and representative set of stakeholders gets to
meet regularly, to debate and acquire information, and
to then make decisions. Another interesting option is
liquid democracy: Rather than relying on a separate class
of professional representatives, everyone is entitled
to vote on important issues, or alternatively delegate
their vote to any other individual, who in turn might
delegate further. Digital tools can be used to facilitate
this process.

This, then, is the main task for our future: To develop
and implement institutions and mechanism for the
democratic control the goals of AI by controlling the
means of prediction. This is the only way for maintaining
collective self-determination, and for aligning the
objectives of Al with those of society at large, to avoid
a dystopian future where we are ruled by AI systems
acting in the interests of a small oligarchy.

Maximilian Kasy is a Professor of Economics at
the University of Oxford. Contact: maximilian.kasy@
economics.ox.ac.uk
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